

CIVIL GEOTECHNICAL SERVICES ABN 26 474 013 724 PO Box 678 Croydon Vic 3136 Telephone: 9723 0744 Facsimile: 9723 0799

28th October 2019

Our Reference: 18751:SB002

Winslow Constructors Pty Ltd 50 Barry Road CAMPBELLFIELD VIC 3061

Dear Sirs/Madams,

RE: LEVEL 1 EARTHWORKS INSPECTION AND TESTING EMERALD PARK ESTATE – STAGE 7, TARNEIT

Please find attached our Report No's 18751/R001 to 18751/R006 that relate to the field density testing that was conducted within the filled allotments at the above subdivision. The level 1 inspections and associated field density testing commenced in November 2018 and was completed in July 2019.

The inspections and testing of the earthworks was undertaken in general accordance with the Level 1 requirements of AS 3798 - Guidelines on Earthworks for Commercial and Residential Developments.

The site inspection and testing was performed by experienced geotechnicians from this office. Any areas that were deemed unsatisfactory were reworked and retested under their supervision. The testing was performed to the relevant Australian Standards and the accompanying test reports carry NATA endorsement. The attached compaction results, which were located randomly throughout the fill profile, are considered to be representative of the bulk fill materials that were placed across the reported allotments by Winslow Constructors during the aforementioned period. The approximate locations of the field density tests can be seen on the attached plan (Figure 1).

We are of the view that the bulk fill materials that have been placed across the reported allotments by Winslow Constructors during the aforementioned period can be considered as having been placed in a controlled manner to a minimum density ratio of 95% (standard compactive effort).

Please contact the undersigned if you require any additional information.

Civil Geotechnical Services

Stephen Burns

FIGURE 1

		Job No	18751
CIVIL GEOTEC	HNICAL SERVICES	Report No	18751/R001
6 - 8 Rose Avenu	e, Croydon 3136	Date Issued	12/12/2018
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	BS
Project	EMERALD PARK - STAGE 7	Date tested	15/11/18
Location	TARNEIT	Checked by	JHF
· · · · · · · · · · · · · · · · · · ·			

Feature	EARTHWORKS	Layer thickness	200 mm	<i>Time:</i> 10:06

Test procedure AS 1289.2.1.1 & 5.8.1

			3	-	-	-
	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1			
тт	175	175	175	-	-	-
t∕m³	1.84	1.89	1.90	-	-	-
%	25.9	26.5	25.4	-	-	-
	1	2	3	-	-	-
			Stan	dard		
тт	19.0	19.0	19.0	-	-	-
wet	0	0	0	-	-	-
t∕m³	1.89	1.93	1.93	-	-	-
t/m³	-	-	-	-	-	-
%	26.0	27.5	26.0	-	-	-
	0.0%	0.5% dry	1.0% dry	-	-	-
%	97.5	98.0	98.0	-	-	-
	mm /m ³ % mm wet /m ³ %	TO FIGURE 1 mm 175 mm 175 mm 25.9 1 1 mm 19.0 wet 0 mm 19.0 wet 0 mm 3 - % 26.0 0.0%	TO FIGURE 1 TO FIGURE 1 mm 175 175 175 /m³ 1.84 1.84 1.89 % 25.9 1 2 mm 19.0 wet 0 0 0 /m³ 1.89 1.89 1.93 /m³ - % 26.0 0.0% 0.5% dry	TO FIGURE 1 TO FIGURE 1 TO FIGURE 1 TO FIGURE 1 mm 175 175 mm 175 175 mm 175 175 mm 175 175 mm 12 3 mm 19.0 190 $\%$ 25.9 26.5 25.4 1 2 3 mm 19.0 19.0 mm 19.0 19.0 mm 19.0 26.0 mm 1.93 1.93 mm^3 - - $\%$ 26.0 27.5 26.0 0.0% 0.5% 1.0% dry dry dry	TO TO TO TO TO FIGURE 1 FIGURE 1 FIGURE 1 FIGURE 1 mm 175 175 175 mm 175 175 - mm 175 175 - mm 175 175 - mm 184 1.89 1.90 - mm 19.0 19.0 - - mm 19.0 1.03 - - mm 1.0% - - - mm 0.0% 0.5% 1.0% - mm 0.0% 0.5%	TO TO TO TO FIGURE 1 FIGURE 1 FIGURE 1 mm 175 175 175 - - mm 175 175 175 - - mm 175 175 25.9 - - $%$ 25.9 26.5 25.4 - - 1 2 3 - - - mm 19.0 19.0 19.0 - - mm 19.0 19.0 - - - mm 19.0 1.0% - - - mm 19.0 26.0 27.5 26.0 - - 0.0%

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/National standards. Accredited for compliance to ISO/IEC 17025. Accreditation No 9909

1 6

Approved Signatory : Justin Fry

CIVIL GEOTEC	HNICAL SERVICES	Job No Report No	18751 18751/R002
6 - 8 Rose Avenu	e, Croydon 3136	Date Issued	14/12/2018
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	BS
Project	EMERALD PARK - STAGE 7	Date tested	16/11/18
Location	TARNEIT	Checked by	JHF
			-

Feature	EARTHWORKS	Layer thickness	300 mm	<i>Time:</i> 13:26

Test procedure AS 1289.2.1.1 & 5.8.1

restino		4	5	6	7	8	9
Location		REFER TO FIGURE 1					
Approximate depth below FSL							
Measurement depth	mm	175	175	175	175	175	175
Field wet density	t∕m³	1.80	1.81	1.73	1.70	1.78	1.80
Field moisture content	%	32.5	26.8	25.2	30.6	22.3	18.7
Test procedure AS 1289.5.7.1 Test No Compactive effort		4	5	6 Stan	7 dard	8	9
Oversize rock retained on sieve	mm	19.0	19.0	19.0	19.0	19.0	19.0
Percent of oversize material	wet	0	0	0	0	0	0
Peak Converted Wet Density	t/m³	1.80	1.80	1.80	1.70	1.80	1.81
Adjusted Peak Converted Wet Density	t∕m³	-	-	-	-	-	-
Optimum Moisture Content	%	35.5	29.0	27.5	33.0	24.5	21.5
		2 50/	2.5%	2.5%	2.5%	2.5%	2.5%
Moisture Variation From		2.3%	2.0/0	2.070			
Moisture Variation From Optimum Moisture Content		2.5% dry	dry	dry	dry	dry	dry
Moisture Variation From Optimum Moisture Content		dry	dry	dry	dry	dry	dry

No 4 - 9 Clay Fill

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/National standards. Accredited for compliance to ISO/IEC 17025. Accreditation No 9909

1

Approved Signatory : Justin Fry

CIVIL GEOTEC	HNICAL SERVICES	Job No Report No	18751 18751/R003
6 - 8 Rose Avenue	e, Croydon 3136	Date Issued	07/01/2019
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	BS
Project	EMERALD PARK - STAGE 7	Date tested	19/11/18
Location	TARNEIT	Checked by	JHF

Feature	EARTHWORKS	Layer thickness	200 mm	<i>Time:</i> 12:57

Test procedure AS 1289.2.1.1 & 5.8.1

Test No		10	11	12	-	-	-
Location							
		REFER	REFER	REFER			
		то	ТО	то			
		FIGURE 1	FIGURE 1	FIGURE 1			
Approximate depth below FSL							
Measurement depth	mm	175	175	175	-	-	-
Field wet density	t∕m³	1.71	1.71	1.71	-	-	-
Field moisture content	%	21.6	21.6	21.0	-	-	-
Test procedure AS 1289.5.7.1							
Test No		10	11	12	-	-	-
Compactive effort				Stan	dard		
Oversize rock retained on sieve	mm	19.0	19.0	19.0	-	-	-
Percent of oversize material	wet	0	0	0	-	-	-
Peak Converted Wet Density	t∕m³	1.80	1.80	1.80	-	-	-
Adjusted Peak Converted Wet Density	t∕m³	-	-	-	-	-	-
Optimum Moisture Content	%	23.5	24.0	23.5	-	-	-
		2.0%	2.5%	2.5%	_		
Moisture Variation From		2.070	2.070	2.070			
Moisture Variation From		drv	anv	arv			
Moisture Variation From Optimum Moisture Content		dry	ary	ary			
Moisture Variation From Optimum Moisture Content		dry					

No 10 - 12 Clay Fill

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/National standards. Accredited for compliance to ISO/IEC 17025. Accreditation No 9909

A

Approved Signatory : Justin Fry

CIVIL GEOTECH	INICAL SERVICES	Job No Report No	18751 18751/R004
6 - 8 Rose Avenue	, Croydon 3136	Date Issued	04/01/2019
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	BS
Project	EMERALD PARK - STAGE 7	Date tested	20/11/18
Location	TARNEIT	Checked by	JHF

Feature	EARTHWORKS	Layer thickness	200 mm	<i>Time:</i> 13:21

Test procedure AS 1289.2.1.1 & 5.8.1

Test No		13	14	15	16	17	18
Location							
		REFER	REFER	REFER	REFER	REFER	REFER
		то	то	то	то	то	то
		FIGURE 1					
Approximate depth below FSL							
Measurement depth	тт	175	175	175	175	175	175
Field wet density	t∕m³	1.73	1.76	1.74	1.76	1.77	1.75
Field moisture content	%	19.9	20.5	18.5	17.5	19.4	19.4
Test procedure AS 1289.5.7.1							
Test No		13	14	15	16	17	18
Compactive effort				Star	dard		-
Oversize rock retained on sieve	mm	19.0	19.0	19.0	19.0	19.0	19.0
Percent of oversize material	wet	0	0	0	0	0	0
Peak Converted Wet Density	t∕m³	1.81	1.80	1.81	1.80	1.81	1.80
Adjusted Peak Converted Wet Density	t∕m³	-	-	-	-	-	-
Optimum Moisture Content	%	22.5	22.5	20.0	20.0	21.5	21.0
Maiatura Variation From		2.5%	2.0%	2.0%	2.5%	2.0%	2.0%
			dny	drv	drv	drv	drv
Optimum Moisture Content		dry	ury	ury	ary	ary	ury
Optimum Moisture Content		dry	ury	ury		ary	ury

No 13 - 18 Clay Fill

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/National standards. Accredited for compliance to ISO/IEC 17025. Accreditation No 9909

A

Approved Signatory : Justin Fry

CIVIL GEOTECHNICAL SERVICES Report	No 18751/R005
6 - 8 Rose Avenue, Croydon 3136 Date Is	sued 05/09/2019
Client WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD) Tested	by JB
Project EMERALD PARK - STAGE 7 Date te	ested 28/06/19
Location TARNEIT Checke	əd by JHF

FeatureEARTHWORKSLayer thickness200 mmTime: 07:30

Test procedure AS 1289.2.1.1 & 5.8.1

		19	20	21	-	-	-
Location		REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1			
Approximate depth below FSL							
Measurement depth	mm	175	175	175	-	-	-
Field wet density	t∕m³	1.98	2.01	1.96	-	-	-
Field moisture content	%	24.6	21.9	24.0	-	-	-
Test No Compactive effort		19	20	21 Stan	- dard	-	-
Oversize rock retained on sieve	mm	19.0	19.0	19.0	-	-	-
Percent of oversize material	wet	0	0	0	-	-	-
Pools Converted Wet Density	t∕m³	2.00	2.02	2.02	_	_	
Feak Convenieu wei Density						-	-
Adjusted Peak Converted Wet Density	t/m³	-	-	-	-	-	-
Adjusted Peak Converted Wet Density Optimum Moisture Content	t/m³ %	- 26.0	- 23.5	- 25.5	-	-	-
Adjusted Peak Converted Wet Density Optimum Moisture Content	t/m³ %	- 26.0	- 23.5	- 25.5	-	-	-
Adjusted Peak Converted Wet Density Optimum Moisture Content Moisture Variation From	<i>t/m³</i> %	- 26.0 1.5%	- 23.5 1.5%	 25.5 1.5%	-	-	-
Adjusted Peak Converted Wet Density Optimum Moisture Content Moisture Variation From Optimum Moisture Content	<u>t/m³</u> %	- 26.0 1.5% dry	- 23.5 1.5% dry	- 25.5 1.5% dry	-	-	
Adjusted Peak Converted Wet Density Optimum Moisture Content Moisture Variation From Optimum Moisture Content	<u>t/m³</u> %	- 26.0 1.5% dry	- 23.5 1.5% dry	- 25.5 1.5% dry	-	-	-

No 19 - 21 Clay Fill

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory : Justin Fry

CIVIL GEOTECHN	NICAL SERVICES	Job No Report No	18751 18751/R006
6 - 8 Rose Avenue, 0	Croydon 3136	Date Issued	05/09/2019
Client V	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	JB
Project E	EMERALD PARK - STAGE 7	Date tested	01/07/19
Location	TARNEIT	Checked by	JHF

Feature	EARTHWORKS	Layer thickness	200 mm	<i>Time:</i> 14:30	
reature			200 mm	Time. 14.50	

Test procedure AS 1289.2.1.1 & 5.8.1

restino		22	23	24	25	-	-
Location							
		REFER	REFER	REFER	REFER		
		то	то	то	то		
		FIGURE 1	FIGURE 1	FIGURE 1	FIGURE 1		
Approximate depth below FSL							
Measurement depth	тт	175	175	175	175	-	-
Field wet density	t∕m³	1.83	1.91	2.03	1.92	-	-
Field moisture content	%	22.2	21.7	26.0	26.0	-	-
Test procedure AS 1289.5.7.1 Test No		22	23	24	25	-	-
Test procedure AS 1289.5.7.1 Test No Compactive effort		22	23	24 Star	25 dard	-	-
Test procedure AS 1289.5.7.1 Test No Compactive effort Oversize rock retained on sieve	mm	22 19.0	23 19.0	24 Star 19.0	25 idard 19.0	-	-
Test procedure AS 1289.5.7.1 Test No Compactive effort Oversize rock retained on sieve Percent of oversize material	mm wet	22 19.0 0	23 19.0 0	24 Star 19.0 0	25 dard 19.0 0	-	-
Test procedure AS 1289.5.7.1 Test No Compactive effort Oversize rock retained on sieve Percent of oversize material Peak Converted Wet Density	mm wet t/m³	22 19.0 0 1.91	23 19.0 0 1.95	24 Star 19.0 0 2.03	25 dard 19.0 0 1.97	- - - -	- - - -
Test procedure AS 1289.5.7.1 Test No Compactive effort Oversize rock retained on sieve Percent of oversize material Peak Converted Wet Density Adjusted Peak Converted Wet Density	mm wet t/m ³ t/m ³	22 19.0 0 1.91	23 19.0 0 1.95	24 Star 19.0 0 2.03 -	25 dard 19.0 0 1.97 -	- - - - -	- - - - -
Test procedure AS 1289.5.7.1 Test No Compactive effort Oversize rock retained on sieve Percent of oversize material Peak Converted Wet Density Adjusted Peak Converted Wet Density Optimum Moisture Content	mm wet t/m ³ t/m ³	22 19.0 0 1.91 - 25.0	23 19.0 0 1.95 - 24.5	24 Star 19.0 0 2.03 - 29.0	25 dard 19.0 0 1.97 - 29.0	- - - - - -	- - - - - -
Test procedure AS 1289.5.7.1 Test No Compactive effort Oversize rock retained on sieve Percent of oversize material Peak Converted Wet Density Adjusted Peak Converted Wet Density Optimum Moisture Content	mm wet t/m ³ %	22 19.0 0 1.91 - 25.0	23 19.0 0 1.95 - 24.5	24 Star 19.0 0 2.03 - 29.0	25 dard 19.0 0 1.97 - 29.0	- - - - - -	- - - - - -
Test procedure AS 1289.5.7.1 Test No Compactive effort Oversize rock retained on sieve Percent of oversize material Peak Converted Wet Density Adjusted Peak Converted Wet Density Optimum Moisture Content Moisture Variation From	mm wet t/m ³ t/m ³ %	22 19.0 0 1.91 - 25.0 2.5%	23 19.0 0 1.95 - 24.5 2.5%	24 Star 19.0 0 2.03 - 29.0 2.5%	25 dard 19.0 0 1.97 - 29.0 2.5%	- - - - - -	- - - - - -
Test procedure AS 1289.5.7.1 Test No Compactive effort Oversize rock retained on sieve Percent of oversize material Peak Converted Wet Density Adjusted Peak Converted Wet Density Optimum Moisture Content Moisture Variation From Optimum Moisture Content	mm wet t/m ³ t/m ³ %	22 19.0 0 1.91 - 25.0 2.5% dry	23 19.0 0 1.95 - 24.5 2.5% dry	24 Star 19.0 0 2.03 - 29.0 2.5% dry	25 dard 19.0 0 1.97 - 29.0 2.5% dry	- - - - - - -	- - - - - -
Test procedure AS 1289.5.7.1 Test No Compactive effort Oversize rock retained on sieve Percent of oversize material Peak Converted Wet Density Adjusted Peak Converted Wet Density Optimum Moisture Content Moisture Variation From Optimum Moisture Content	mm wet t/m ³ t/m ³ %	22 19.0 0 1.91 - 25.0 2.5% dry	23 19.0 0 1.95 - 24.5 2.5% dry	24 Star 19.0 0 2.03 - 29.0 2.5% dry	25 dard 19.0 0 1.97 - 29.0 2.5% dry	- - - - - -	- - - - -

No 22 - 25 Clay Fill

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation No 9909

Approved Signatory : Justin Fry